Effects of copper and zinc oxide nanoparticles on German cockroach development, indoxacarb resistance, and bacterial load

Author:

Zha Chen1,Turner Matthew2,Ray Ritesh2,Liang Dangsheng1,Pietri Jose E.2ORCID

Affiliation:

1. Apex Bait Technologies, Inc. Santa Clara CA USA

2. Sanford School of Medicine, Division of Basic Biomedical Sciences University of South Dakota Vermillion SD USA

Abstract

AbstractBACKGROUNDThe German cockroach, Blattella germanica, is a ubiquitous and medically significant urban pest. The ongoing development of insecticide resistance in global populations of B. germanica has complicated control efforts and created a need for improved tools. We previously reported that disruption of the gut microbiota by oral administration of the antimicrobial doxycycline reduced resistance in an indoxacarb resistant field strain and also delayed nymphal development and reduced adult fecundity. However, the application of doxycycline for cockroach control in the field is impractical. Here, we sought to determine whether two metal nanoparticles with known antimicrobial properties, copper (Cu) and zinc oxide (ZnO), have similar effects to doxycycline on the physiology of B. germanica and could provide more practical alternatives for control.RESULTSWe found that dietary exposure to 0.1% Cu nanoparticles, but not ZnO, significantly delays the development of nymphs into adults. However, neither of the nanoparticles altered the fecundity of females, and ZnO surprisingly increased resistance to indoxacarb in a resistant field strain, in contrast to doxycycline. Semi‐quantitative polymerase chain reaction (qPCR) further revealed that prolonged dietary exposure (14 days) to Cu or ZnO nanoparticles at the low concentration readily consumed by cockroaches (0.1%) does not reduce the load of the bacterial microbiota, suggesting alternative mechanisms behind their observed effects.CONCLUSIONSTogether, our results indicate that ingestion of Cu nanoparticles can impact German cockroach development through an undetermined mechanism that does not involve reducing the overall load of the bacterial microbiota. Therefore, Cu may have some applications in cockroach control as a result of this activity but antagonistic effects on insecticide resistance should be considered when evaluating the potential of nanoparticles for cockroach control. © 2023 Society of Chemical Industry.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3