A multispecies hierarchical model to integrate count and distance‐sampling data

Author:

Gilbert Neil A.12ORCID,Blommel Caroline M.23,Farr Matthew T.124ORCID,Green David S.5ORCID,Holekamp Kay E.12,Zipkin Elise F.12ORCID

Affiliation:

1. Ecology, Evolution, and Behavior Program Michigan State University East Lansing Michigan USA

2. Department of Integrative Biology Michigan State University East Lansing Michigan USA

3. Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA

4. Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA

5. Institute for Natural Resources Portland State University Portland Oregon USA

Abstract

AbstractIntegrated community models—an emerging framework in which multiple data sources for multiple species are analyzed simultaneously—offer opportunities to expand inferences beyond the single‐species and single‐data‐source approaches common in ecology. We developed a novel integrated community model that combines distance sampling and single‐visit count data; within the model, information is shared among data sources (via a joint likelihood) and species (via a random‐effects structure) to estimate abundance patterns across a community. Parameters relating to abundance are shared between data sources, and the model can specify either shared or separate observation processes for each data source. Simulations demonstrated that the model provided unbiased estimates of abundance and detection parameters even when detection probabilities varied between the data types. The integrated community model also provided more accurate and more precise parameter estimates than alternative single‐species and single‐data‐source models in many instances. We applied the model to a community of 11 herbivore species in the Masai Mara National Reserve, Kenya, and found considerable interspecific variation in response to local wildlife management practices: Five species showed higher abundances in a region with passive conservation enforcement (median across species: 4.5× higher), three species showed higher abundances in a region with active conservation enforcement (median: 3.9× higher), and the remaining three species showed no abundance differences between the two regions. Furthermore, the community average of abundance was slightly higher in the region with active conservation enforcement but not definitively so (posterior mean: higher by 0.20 animals; 95% credible interval: 1.43 fewer animals, 1.86 more animals). Our integrated community modeling framework has the potential to expand the scope of inference over space, time, and levels of biological organization, but practitioners should carefully evaluate whether model assumptions are met in their systems and whether data integration is valuable for their applications.

Funder

Directorate for Biological Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3