Identification of optimal flow rate for culture media, cell density, and oxygen toward maximization of virus production in a fed‐batch baculovirus‐insect cell system

Author:

Sharma Surbhi1ORCID,Mahadevan Jagadeesh1,Giri Lopamudra1ORCID,Mitra Kishalay1ORCID

Affiliation:

1. Department of Chemical Engineering Indian Institute of Technology Hyderabad Telangana India

Abstract

AbstractIn recent times, it has been realized that novel vaccines are required to combat emerging disease outbreaks, and faster optimization is required to respond to global vaccine demands. Although, fed‐batch operations offer better productivity, experiment‐based optimization of a new fed‐batch process remains expensive and time‐consuming. In this context, we propose a novel computational framework that can be used for process optimization and control of a fed‐batch baculovirus‐insect cell system. Since the baculovirus expression vector system (BEVS) is known to be widely used platforms for recombinant protein/vaccine production, we chose this system to demonstrate the identification of optimal profile. Toward this, first, we constructed a mathematical model that captures the time course of cell and virus growth in a baculovirus‐insect cell system. Second, the proposed model was used for numerical analysis to determine the optimal operating profiles of control variables such as culture media, cell density, and oxygen based on a multiobjective optimal control formulation. Third, a detailed comparison between batch and fed‐batch culture was perfromed along with a comparison between various alternatives of fed‐batch operation. Finally, we demonstrate that a model‐based quantification of controlled feed addition in fed‐batch culture is capable of providing better productivity as compared to a batch culture. The proposed framework can be utilized for the estimation of optimal operating regions of different control variables to achieve maximum infected cell density and virus yield while minimizing the substrate/media, uninfected cell, and oxygen consumption.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3