The Role of Structural Flexibility in Hydrocarbon‐Stapled Peptides Designed to Block Viral Infection via Human ACE2 Mimicry

Author:

Jiang Sicheng1,Tian Yu1,Nicolaescu Vlad2,Mansurov Aslan1,Randall Glenn2,Tirrell Matthew V.12,LaBelle James L.3ORCID

Affiliation:

1. Pritzker School of Molecular Engineering, The University of Chicago Chicago Illinois USA

2. Argonne National Laboratory Lemont Illinois USA

3. Department of Pediatrics, Section of Hematology/Oncology The University of Chicago Chicago Illinois USA

Abstract

ABSTRACTThe COVID‐19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small‐molecule‐based antiviral agents against severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). The interaction between the SARS‐CoV2 spike protein with the angiotensin‐converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well‐described protein–protein interaction (PPI). This PPI is mediated by an α‐helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry. Small numbers of hydrocarbon‐stapled synthetic peptides designed to disrupt or block this interaction were tested individually and were found to have variable efficacy despite having related or overlapping sequences and similarly increased α‐helicity. Reasons for these differences are unclear and reported preclinical successes have been limited. This study sought to better understand reasons for these differences through evaluation of a comprehensive collection of hydrocarbon‐stapled peptides, designed based on four distinct principles: stapling position, number of staples, amino acid sequence, and primary sequence length. Surprisingly, we observed that the helicity and amino acid sequence iterations of hydrocarbon‐stapled peptides did not correlate with their bioactivity. Our results highlight the importance of iterative and combinatorial testing of these compounds to determine a configuration that best mimics natural binding and allows for chain flexibility while sacrificing structural helicity.

Funder

National Science Foundation

National Institute of Allergy and Infectious Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3