A compositional view comparing modern biological condensates and primitive phase‐separated compartments

Author:

Cannelli Selene M. C.1,Gupta Ritvik1ORCID,Nguyen Tan1ORCID,Poddar Arunava1ORCID,Sharma Srishti1ORCID,Vithole Prachiti V.1,Jia Tony Z.12ORCID

Affiliation:

1. Blue Marble Space Institute of Science Seattle Washington USA

2. Earth‐Life Science Institute Tokyo Institute of Technology Tokyo Japan

Abstract

AbstractLiquid–liquid phase separation (LLPS) is a process that often occurs due to binding between oppositely charged biopolymers, and has gained increasing attention recently due to their ubiquity in biological systems and ability to direct essential cellular processes. However, while these discoveries in biology are recent, the field of origins of life has been investigating LLPS for nearly 100 years, ever since the first suggestions by Oparin and Haldane that primitive LLPS could have been precursors to the first cells on Earth. Since then, a significant amount of work has been done to elucidate different primitive LLPS systems that could have been relevant as protocellular models. Given the structural similarities between primitive LLPS and modern membraneless organelles, there may even be an evolutionary link between the two, although this remains a question to be answered. Nevertheless, in order to answer this, a source that compares compositional aspects of modern biological condensates and primitive LLPS is necessary. Here, we first focus on membraneless organelles composed of intrinsically disordered proteins (IDPs) and nucleic acids. Then, as a parallel, we explore primitive membraneless compartments composed of simple biopolymers such as short peptides and nucleic acids. This is followed by a discussion of how the first biomolecules on Earth may have originated, analyzing the environmental and chemical conditions that could have favored primitive LLPS processes. Finally, we directly compare composition of modern biological condensates and primitive phase‐separated compartments, further discussing the potential of primitive IDPs on early Earth, but also the evolution from membraneless to membrane‐bound cells. This review aims to provide a compositional comparison of modern and primitive phase‐separated structures in order to help researchers in both fields understand the current state of knowledge, how this knowledge evolved, and the current gaps that need to be further addressed.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Organic Chemistry,Biomaterials,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3