Theoretical study of CHYMO32 peptide obtained by in silico fragmentation of the escapin protein isolated from marine hare Aplysia californica: A prediction for antimicrobial activity

Author:

Cardoso Macley Silva1ORCID,Boeira Jane Marlei2ORCID

Affiliation:

1. Programa de Pós‐Graduação Lato sensu em Biotecnologia Universidade Estadual do Rio Grande do Sul Porto Alegre Brazil

2. Grupo de pesquisa em Toxicologia e Biotecnologia Universidade Estadual do Rio Grande do Sul Porto Alegre Brazil

Abstract

AbstractThe scenario involving the alarming growth of bacterial resistance has never been more worrying. Increasingly selective and sophisticated bacterial strains resistant to traditional antibiotics are a threat to the health system worldwide. Therefore, antimicrobial peptides (AMPs) represent a promising path in the fight against multidrug‐resistant pathogens. Here, using an in silico methodology, employing robust software, the present study aims to analyze the chymo32 peptide, obtained by enzymatic fragmentation of the escapin protein to test its possible antibacterial effects, correlating them with their physical–chemical nature. In this study, we used in silico predictions such as structural prediction, physicochemical properties, hemolytic activity, and prediction of activity for immunomodulation. Among the 378 peptide fragments obtained from the original protein, chymo32 was the only peptide selected in the field of screenings involving sequence length, cationicity, hydrophobicity, and prediction of antibacterial activity. The physical–chemical properties of chymo32 are promising, as well as its prediction as AMP. The immunomodulation predictions showed no immunogenic potential, which indicates greater safety in the posterior steps in vitro, also highlighting the absence of hemolytic activity, one of the main problems associated with AMPs in the therapeutic clinic.

Publisher

Wiley

Subject

Organic Chemistry,Biomaterials,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3