In Silico Prediction and Molecular Simulation of Antimicrobial Peptide Variants From Lactobacillus sp. Against Porphyromonas gingivalis and Fusobacterium nucleatum in Oral Squamous Cell Carcinoma

Author:

Taj Zarin1,Chattopadhyay Indranil1ORCID

Affiliation:

1. Department of Biotechnology, School of Life Sciences Central University of Tamil Nadu Neelakudi Thiruvarur India

Abstract

ABSTRACT Porphyromonas gingivalis and Fusobacterium nucleatum are known to contribute to a variety of tumorigenic pathways linked to the progression of oral squamous cell carcinoma (OSCC). The growing global incidence of antibiotic resistance highlights the critical need to consider the use of antimicrobial peptides (AMPs) as a viable alternative to conventional antibiotics. The current study comprehensively tested Lactobacillus sp.−derived AMPs against bacterially exacerbated OSCC. A total of 52 AMPs were obtained from various databases, and an in silico analysis determined their potent antibacterial and anticancer characteristics after a rigorous screening and pruning approach. Twelve AMPs were tested for 3D structural alignment prediction and validation, with the GH12 synthetic AMP serving as a control. These candidate peptides were thoroughly screened against six important virulence proteins of P. gingivalis and four of F. nucleatum, with the lowest energy score of the docked complexes measuring binding affinity and interactions with active residues being chosen. plpl_18 was determined as the most efficient new AMP that interacted with the virulence protein RagB of P. gingivalis and Fap2 of F. nucleatum with docking scores of −238.24 and −254.27 kcal/mol, respectively. This AMP plpl_18 was docked against selective target OSCC regulatory proteins such as cytokines, metallomatrix proteinase, MAPK, E‐cadherin, and JAK‐1 proteins. Among these proteins, it docked against matrix metalloproteinase‐9 with the highest negative docking scores of −7.5, −260.956, and −1361.9 kcal/mol using AutoDock Vina, HPEPDOCK, and ClusPro 2.0, respectively. Molecular dynamic simulation was used to perform extrapolated validation. These computational studies provide an essential foundation for anticipated laboratory and clinical investigations concerning the possibility of adapting therapeutic peptides based on probiotics to combat the proliferation of OSCC, which is accelerated by F. nucleatum and P. gingivalis.

Funder

Indian Council of Medical Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Therapeutic Potential: A Comprehensive Review of Antimicrobial Peptides in Oral Cancer Management;International Journal of Peptide Research and Therapeutics;2024-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3