Lignin‐derived carbon with pyridine N‐B doping and a nanosandwich structure for high and stable lithium storage

Author:

Wu Dichao12ORCID,Li Jiayuan12,Zhao Yuying12,Wang Ao1,Zhang Gaoyue3,Jiang Jianchun1,Fan Mengmeng2ORCID,Sun Kang1456

Affiliation:

1. Key Lab of Biomass Energy and Material, Jiangsu Province, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, Institute of Chemical Industry of Forest Products Chinese Academy of Forestry Nanjing China

2. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering Nanjing Forestry University Nanjing China

3. School of Energy and Environment Southeast University Nanjing China

4. Department of Chemistry Tsinghua University Beijing China

5. Fujian Provincial Key Laboratory of Biomass Low‐Carbon Conversion, Academy of Advanced Carbon Conversion Technology Huaqiao University Xiamen China

6. Chinese Academy of Sciences Xinjiang Lihua Institute of Technology Urumqi China

Abstract

AbstractBiomass‐derived carbon is a promising electrode material in energy storage devices. However, how to improve its low capacity and stability, and slow diffusion kinetics during lithium storage remains a challenge. In this research, we propose a “self‐assembly‐template” method to prepare B, N codoped porous carbon (BN‐C) with a nanosandwich structure and abundant pyridinic N‐B species. The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film, shortening the Li+ diffusion pathway, and accommodating volume expansion during repeated charging/discharging. The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li+/PF6 and reduce the diffusion barrier. The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g−1 at 0.05 A g−1 and superior stability (96.5% retained after 2000 cycles). Moreover, owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species, the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7 W h kg−1, high power density of 39.38 kW kg−1, and excellent cycling stability, superior to most of the other cells reported in the literature. As the density functional theory simulation demonstrated, pyridinic N‐B shows enhanced adsorption activity for Li+ and PF6, which promotes an increase in the capacity of the anode and cathode, respectively. Meanwhile, the relatively lower diffusion barrier of pyridinic N‐B promotes Li+ migration, resulting in good rate performance. Therefore, this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3