1. M. Bédard (2006). On the Robustness of Optimal Scaling for Random Walk Metropolis Algorithms. Doctoral dissertation, Department of Statistics, University of Toronto.
2. Weak convergence of Metropolis algorithms for non-iid target distributions;Bédard;The Annals of Applied Probability,2007
3. M. Bédard (2007b). Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234. Stochastic Processes and their Applications, In press: corrected proof available online 31 December 2007.
4. Efficient sampling using Metropolis algorithms: Applications of optimal scaling results;Bédard;Journal of Computational and Graphical Statistics,2008
5. M. Bédard, G. Fort & E. Moulines (2008). Optimal scaling for the multiple-try Metropolis algorithm. In preparation.