The impact of ICE‐6G ice sheet topography in the oceanic carbonate system

Author:

Leonardo Noele Franchi1ORCID,Casagrande Fernanda2ORCID,Justino Flavio Barbosa3

Affiliation:

1. Department of Atmospheric Sciences Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo São Paulo Brazil

2. Earth System Numerical Modeling Division National Institute for Space Research (INPE) Cachoeira Paulista Brazil

3. Departamento de Engenharia Agrícola Universidade Federal de Viçosa Minas Gerais Brazil

Abstract

AbstractDuring the Last Glacial Maximum (approximately 21 ka BP) the presence of large ice sheets over the Northern Hemisphere (NH) caused significant changes in the ocean–atmosphere interaction. Remarkable changes are noticed in NH both topography and atmospheric CO2 levels. This paper investigates the impact of the most recent paleotopography (ICE6G) in the Earth's climate and the oceanic carbonate system, based on a series of experiments conducted with the oceanic‐atmosphere‐vegetation‐ice‐carbon model, UVic ESCM. Results indicate enhanced cooling in northern North America in the ICE6G compared to the ICE4G simulation due to the lapse rate effect. The decrease of −24°C in the surface temperature in the ICE6G relative to the present day (PD) led to a modification of the atmospheric circulation in the Atlantic and North Pacific regions. Positive and negative anomalies vary widely for the E–P (evaporation–precipitation) flux pattern, but colder and drier atmosphere leads to a reduction in precipitation in the ICE6G experiment. Changes in wind stress between ICE6G and PD induce low temperatures in the Northern Hemisphere. These features are related changes of Ekman's transport and evaporative cooling resulting in positive anomalies of SST. Thus, changes in sea surface temperature and salinity (SST, SSS), and E–P flux led to modifications in the oceanic carbonate system, resulting in an overall increase of total alkalinity and a reduction in the concentrations of total carbon dioxide (TCO2) in the ICE6G with respect to the PD values. This is a consequence of the low concentration of glacial CO2 and increment in concentrations. The total alkalinity (TA) and TCO2 do not show a similar response to the SST and SSS, in the sense that larger departures from the PD are found in the Pacific equatorial region, which are affected by changes in water dilution as a result of precipitation and evaporation processes.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3