Affiliation:
1. School of Mathematical Sciences Guizhou Normal University Guiyang China
Abstract
The Ciarlet–Raviart mixed method is popular for the biharmonic equations/eigenvalue problem. In this paper, we propose a multigrid discretization based on the shifted‐inverse iteration of Ciarlet–Raviart mixed discontinuous Galerkin method for the biharmonic eigenvalue problem. We prove the a priori error estimates of the approximate eigenpairs. We also give the a posteriori error estimates of the approximate eigenvalues and prove the reliability of the estimator and implement adaptive computation. Numerical experiments show that our method can efficiently compute biharmonic eigenvalues.
Funder
National Natural Science Foundation of China
Reference49 articles.
1. R.Glowinski Approximations externes par elements finis de Lagranged′$$ {d}^{\prime } $$ordre unetdeux du problem de Dirichlet pourl′$$ {l}^{\prime } $$opérateur biharmonique 1973. Mhthodes iteratives de resolutions des problemes.
2. Numerical solution of the biharmonic problems by mixed finite elements of class
C0$$ {C}^0 $$;Mercier B.;Boll. Un. Mat. Ital.,1974
3. A Mixed Finite Element Method for the Biharmonic Equation
4. Eigenvalue problems
5. Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems