Toward generalizable structure‐based deep learning models for protein–ligand interaction prediction: Challenges and strategies

Author:

Moon Seokhyun1ORCID,Zhung Wonho1ORCID,Kim Woo Youn123ORCID

Affiliation:

1. Department of Chemistry KAIST Daejeon Republic of Korea

2. AI Institute KAIST Daejeon Republic of Korea

3. HITS Inc. Seoul Republic of Korea

Abstract

AbstractAccurate and rapid prediction of protein–ligand interactions (PLIs) is the fundamental challenge of drug discovery. Deep learning methods have been harnessed for this purpose, yet the insufficient generalizability of PLI prediction prevents their broader impact on practical applications. Here, we highlight the significance of PLI model generalizability by conceiving PLIs as a function defined on infinitely diverse protein–ligand pairs and binding poses. To delve into the generalization challenges within PLI predictions, we comprehensively explore the evaluation strategies to assess the generalizability fairly. Moreover, we categorize structure‐based PLI models with leveraged strategies for learning generalizable features from structure‐based PLI data. Finally, we conclude the review by emphasizing the need for accurate pose‐predicting methods, which is a prerequisite for more accurate PLI predictions.This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Data Science > Chemoinformatics Structure and Mechanism > Computational Biochemistry and Biophysics

Funder

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3