Scale‐dependent population drivers inform avian management in a declining saline lake ecosystem

Author:

Van Tatenhove Aimee M.1ORCID,Neill John2,Norvell Russell E.3,Stuber Erica F.14ORCID,Rushing Clark S.5ORCID

Affiliation:

1. Department of Wildland Resources and the Ecology Center Utah State University Logan Utah USA

2. Great Salt Lake Ecosystem Program Utah Division of Wildlife Resources Hooper Utah USA

3. Utah Division of Wildlife Resources Salt Lake City Utah USA

4. U.S. Geological Survey Utah Cooperative Fish and Wildlife Research Unit Utah State University Logan Utah USA

5. Warnell School of Forestry and Natural Resources, University of Georgia Athens Georgia USA

Abstract

AbstractShrinking saline lakes provide irreplaceable habitat for waterbird species globally. Disentangling the effects of wetland habitat loss from other drivers of waterbird population dynamics is critical for protecting these species in the face of unprecedented changes to saline lake ecosystems, ideally through decision‐making frameworks that identify effective management options and their potential outcomes. Here, we develop a framework to assess the effects of hypothesized population drivers and identify potential future outcomes of plausible management scenarios on a saline lake‐reliant waterbird species. We use 36 years of monitoring data to quantify the effects of environmental conditions on the population size of a regionally important breeding colony of American white pelicans (Pelecanus erythrorhynchos) at Great Salt Lake, Utah, US, then forecast colony abundance under various management scenarios. We found that low lake levels, which allow terrestrial predators access to the colony, are probable drivers of recent colony declines. Without local management efforts, we predicted colony abundance could likely decline approximately 37.3% by 2040, although recent colony observations suggest population declines may be more extreme than predicted. Results from our population projection scenarios suggested that proactive approaches to preventing predator colony access and reversing saline lake declines are crucial for the persistence of the Great Salt Lake pelican colony. Increasing wetland habitat and preventing predator access to the colony together provided the most effective protection, increasing abundance 145.4% above projections where no management actions are taken, according to our population projection scenarios. Given the importance of water levels to the persistence of island‐nesting colonial species, proactive approaches to reversing saline lake declines could likely benefit pelicans as well as other avian species reliant on these unique ecosystems.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3