Macroeconomic real‐time forecasts of univariate models with flexible error structures

Author:

Trinh Kelly12ORCID,Zhang Bo34ORCID,Hou Chenghan5ORCID

Affiliation:

1. Data61 The Commonwealth Scientific and Industrial Research Organisation Clayton Victoria Australia

2. College of Science and Engineering James Cook University Townsville Queensland Australia

3. Business School Wenzhou University Wenzhou Zhejiang China

4. Centre for Applied Macroeconomic Analysis (CAMA) Australian National University Canberra Australian Capital Territory Australia

5. Center for Economics, Finance and Management Studies Hunan University Changsha Hunan China

Abstract

AbstractThis paper investigates the importance of flexible error structure specifications in two widely used univariate models, namely, autoregressive and unobserved component models, in fitting and forecasting 20 significant US macroeconomic variables. The in‐sample estimation reveals that the models with flexible error structures provide better in‐sample fit than the univariate models with homoscedastic errors. Furthermore, the density forecast analysis suggests that accommodating heavy tail, stochastic volatility, and serial correlation in error structures leads to significant improvements in short‐term forecasts. For most macroeconomic variables, the univariate models tend to yield more accurate one‐step‐ahead forecasts than the multivariate (vector autoregressive) models in terms of both point and density forecasts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference34 articles.

1. VARMA versus VAR for Macroeconomic Forecasting

2. The Contribution of Structural Break Models to Forecasting Macroeconomic Series

3. Direct autoregressive predictors for multistep prediction: Order selection and performance relative to the plug in predictors;Bhansali R. J.;Statistica Sinica,1997

4. Generalized autoregressive conditional heteroskedasticity

5. Common Drifting Volatility in Large Bayesian VARs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3