Affiliation:
1. State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
2. Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
Abstract
AbstractThe development of efficient multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials with ultra‐narrowband emission presents an ongoing challenge. In this work, a carbazole‐fused dual‐boron embedded MR‐TADF framework is proposed, achieving three emitters, CFDBO, CFDBA, and CFDBCz, via one‐shot borylation with very high yields of over 70%. The emitters display ultra‐narrowband blue emission with peaks ranging from 452 to 479 nm and small full width at half maximum (FWHM) values of only 16–18 nm in dilute toluene solutions. Furthermore, the organic light‐emitting diode (OLED) incorporating CFDBO exhibits pure‐blue emission with a peak of 460 nm and Commission International de l'Eclairage coordinates of (0.14, 0.12). Meanwhile, OLEDs incorporating CFDBA/CFDBCz demonstrate remarkable performances with high external quantum efficiencies of 30.9%/32.4% and exceptionally slender FWHM values of 21/22 nm, representing outstanding performances among reported MR‐TADF materials.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献