Transcription of Customized Circularly Polarized Luminescence from Enantiomeric Metal–Organic Framework to Carbon Dots

Author:

Wang Xue‐Yan1,Luo Peng1,Dong Xi‐Yan1ORCID,Guan Shan2,Zhang Chong3

Affiliation:

1. College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454003 China

2. College of Chemistry Zhengzhou University Zhengzhou 450001 China

3. School of Materials Science and Engineering Henan University of Technology Zhengzhou 450001 China

Abstract

AbstractChiral carbon dots (CDs) with circularly polarized luminescence (CPL) are one of the most dynamic areas of modern science. However, the design, preparation, and ambiguity mechanism of solid‐state CPL‐active CDs remains a formidable challenge. Herein, for the first time, CDs with customized chiroptical activities in the solid state, especially CPL, are transcribed from chiral metal–organic framework (CMOFs) via a bottle‐around‐ship strategy. Within these CMOFs⊃CDs assemblies, CDs inherited the chirality of the host CMOFs through host–guest interactions, which is revealed by density functional theory (DFT) simulations and experimental results, and amplified the luminescence dissymmetry factor (glum) by effective artificial chiral light‐harvesting systems. Impressively, CMOFs⊃CDs in pairs generated color‐tunable CPL and white CPL with chromaticity coordinates of (0.32, 0.32). Furthermore, benefiting from excellent processability, as luminescent coatings and 3D printing inks, a white circularly polarized light‐emitting diode, and an extended 3D model “light bulb” featuring white CPL are successfully fabricated, respectively. This strategy paves a new avenue for the synthesis and advanced application of solid‐state CPL‐active CDs‐based materials.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Zhengzhou University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3