Affiliation:
1. State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China
2. College of Information Science and Electronic Engineering Zhejiang University Hangzhou 310027 China
3. Zhejiang Lab Hangzhou 311100 China
4. School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
Abstract
AbstractThe outstanding performance of halide perovskite makes it one of the champion materials for applications in optoelectronic devices. However, the stability of perovskites limits their practical applications. Among all the factors influencing the stability of perovskites, defects are one of the key factors. Till now, many chemical methods have been proposed to passivate defects. Nevertheless, there is still a lack of in situ passivation methods without the change of the composition of perovskites. Here, it is found that the external electric field can passivate the defects in FPEA2PbI4 (FPEAI = 2‐(4‐Fluorophenyl)ethylamine Hydroiodide) film in a capacitive device at 78 K, and the PL intensity can be enhanced greatly. A “charge‐soaking effect” can be observed, that is PL intensity continues to increase for a long time after removing the electric field. Besides the emission peak from free exciton, two other peaks at the lower energy side from defect‐bound excitons are observed. They are more susceptible to the external electric field than the free exciton. This work will deepen the understanding of exciton behavior and the interaction of electric field with excitons in two–dimensional (2D) hybrid perovskites for efficient light–emitting diodes (LEDs) and electrically pumped lasers. It provides a new in situ passivation method of perovskites for practical applications.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献