Affiliation:
1. CAS Key Laboratory for Nano‐Bio Interface Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences Suzhou 215123 China
2. College of Chemistry and Chemical Engineering Henan Polytechnic University Jiaozuo 454000 China
3. School of Medicine Henan Polytechnic University Jiaozuo 454000 China
Abstract
AbstractMetal nanoclusters with aggregation‐induced emission (AIE) characteristics are potential nanomaterial candidates for a wide array of advanced optical applications. In this study, a novel self‐assembly enhanced AIE strategy utilizing 6‐thioguanine (TG)‐protected gold nanoclusters (AuNCs) is fabricated with dual‐stimuli responsive modes of excitation wavelength‐dependent (Ex‐De) emission and mechanochromic properties. The sheetlike structures of AuNCs self‐assembly (AuNC sheets) with typical AIE characteristics are generated in bad solvent owing to the intermolecular hydrogen‐bonds interaction among guanine‐rich moieties of TG ligand. Interestingly, the maximum emission peaks of AuNC sheets are red‐shifted with the increased excitation wavelengths, indicating Ex‐De emission behavior. This phenomenon enables the achievement of wide‐range tunable photoluminescence (PL). In addition, the emission peak of AuNC sheets powders before and after grinding displays the bathochromic shift of 110 nm. The “off–on” switch of Ex‐De emission behavior in AuNC sheets can be manipulated by changing mechanical pressure. It is speculated that the tunable PL behavior of AuNC sheets originates from multiple excited states due to the existence of different Au(I)···Au(I) distances. The self‐assembly‐driven AIE strategy of AuNCs with stimuli‐responsive allochroic modes will facilitate the recording of rewritable information, opening up a new avenue for high‐throughput and multi‐dimensional optical security.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Jiangsu Planned Projects for Postdoctoral Research Funds
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献