‘Sawfish’ Photonic Crystal Cavity for Near‐Unity Emitter‐to‐Fiber Interfacing in Quantum Network Applications

Author:

Bopp Julian M.12ORCID,Plock Matthias3ORCID,Turan Tim1,Pieplow Gregor1ORCID,Burger Sven34ORCID,Schröder Tim12ORCID

Affiliation:

1. Humboldt‐Universität zu Berlin Department of Physics 12489 Berlin Germany

2. Ferdinand‐Braun‐Institut gGmbH Leibniz‐Institut für Höchstfrequenztechnik 12489 Berlin Germany

3. Zuse Institute Berlin (ZIB) 14195 Berlin Germany

4. JCMwave GmbH 14050 Berlin Germany

Abstract

AbstractPhoton loss is one of the key challenges to overcome in complex photonic quantum applications. Photon collection efficiencies directly impact the amount of resources required for measurement‐based quantum computation and communication networks. Promising resources include solid‐state quantum light sources. However, efficiently coupling light from a single quantum emitter to a guided mode remains demanding. In this work, photon losses are eliminated by maximizing coupling efficiencies in an emitter‐to‐fiber interface. A waveguide‐integrated ‘Sawfish’ photonic crystal cavity is developed and finite element (FEM) simulations are employed to demonstrate that such an emitter‐to‐fiber interface transfers, with 97.4 % efficiency, the zero‐phonon line (ZPL) emission of a negatively‐charged tin vacancy center in diamond (SnV) adiabatically to a single‐mode fiber. A surrogate model trained by machine learning provides quantitative estimates of sensitivities to fabrication tolerances. The corrugation‐based Sawfish design proves robust under state‐of‐the‐art nanofabrication parameters, maintaining an emitter‐to‐fiber coupling efficiency of 88.6 %. Applying the Sawfish cavity to a recent one‐way quantum repeater protocol substantiates its potential in reducing resource requirements in quantum communication.

Funder

Bundesministerium für Bildung und Forschung

H2020 European Research Council

Einstein Stiftung Berlin

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3