High Strain Engineering of a Suspended WSSe Monolayer Membrane by Indentation and Measured by Tip‐Enhanced Photoluminescence

Author:

Chiout Anis1,Tempez Agnès2ORCID,Carlier Thomas2ORCID,Chaigneau Marc2,Cadiz Fabian3,Rowe Alistair3ORCID,Zheng Biyuan4ORCID,Pan Anlian4ORCID,Pala Marco1ORCID,Oehler Fabrice1ORCID,Ouerghi Abdelkarim1ORCID,Chaste Julien1ORCID

Affiliation:

1. Université Paris‐Saclay CNRS Centre de Nanosciences et de Nanotechnologies Palaiseau 91120 France

2. HORIBA France SAS Passage Jobin Yvon Palaiseau 91120 France

3. Laboratoire de Physique de la Matière Condensée CNRS Ecole Polytechnique Institut Polytechnique de Paris Palaiseau 91120 France

4. Key Laboratory for Micro‐Nano Physics and Technology of Hunan Province State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering Hunan University Changsha Hunan 410082 China

Abstract

AbstractStraintronics involves the manipulation and regulation of the electronic characteristics of 2D materials through the use of macro‐ and nano‐scale strain engineering. In this study, an atomic force microscope (AFM) coupled with an optical system is used to perform indentation measurements and tip‐enhanced photoluminescence (TEPL), allowing to extract the local optical response of a suspended monolayer membrane of ternary WSSe at various levels of deformation, up to strains of 10%. The photoluminescence signal is modeled considering the deformation, stress distribution, and strain dependence of the WSSe band structure. An additional TEPL signal is observed that exhibits significant variation under strain, with 64 meV per percent of elongation. This peak is linked to the highly strained 2D material lying right underneath the tip. The amplification of the signal and its relation to the excitonic funneling effect are discussed in a more comprehensive model. The diffusion caused by Auger recombination against the radiative excitonic decay will also be compared. TEPL is used to examine and comprehend the local physics of 2D semi‐conducting materials subjected to extreme mechanical strain. Chemical vapor deposition‐fabricated 2D ternaries possess high strain resistance, comparable to the benchmark MoS2, and a high Young's modulus of 273 GPa.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3