High‐Performance Hydrogel SERS Chips with Tunable Localized Surface Plasmon Resonance for Coordinated Electromagnetic Enhancement with Chemical Enhancement

Author:

Chen Mingming1,Liu Zhihong1,Su Bihang1,Hu Rongjing1,Fu Fengfu1,Jiang Xiancai2,Lin Zhenyu1,Dong Yongqiang1ORCID

Affiliation:

1. MOE Key Laboratory for Analytical Science of Food Safety and Biology Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety College of Chemistry Fuzhou University Fuzhou 350000 P. R. China

2. College of Chemical Engineering Fuzhou University Fuzhou 350000 P. R. China

Abstract

AbstractHydrogel surface‐enhanced Raman scattering (SERS) chips with tunable localized surface plasmon resonance (LSPR) wavelength are prepared to coordinate the chemical enhancement (CM) and electromagnetic enhancement (EM) effects for molecules. When detecting different molecules, a laser with matched energy is selected according to energy intervals between the molecular energy levels and the Fermi level of Ag nanoparticles to obtain the strongest CM effect. Meanwhile, a hydrogel SERS chip with the LSPR wavelength matching with the laser is selected to gain the strongest EM effect. As a result, the constructed hydrogel SERS chips show outstanding activity to many molecules. Amoxicillin, pymetrozine, and chlorpyrifos are used as the model molecules to demonstrate the great importance of CM effect and the working principle of the obtained hydrogel SERS chips. Besides the ultrahigh activity, the obtained hydrogel SERS chips also show high uniformity, long‐term stability, and strong anti‐interference to the sample matrix, and thereby are highly practical. This work not only provides an efficient strategy for building high‐performance SERS substrates, but also sheds the light on the mechanism of wave selection of SERS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3