Multifunctional and High‐Performance FAPBI3 Quantum Dots/Graphene UV Photodetectors by the Modulation of Photoconductivity

Author:

Shen Jun‐Hao1,Yu Xiu‐Qi1,Tu Wei‐Chen123ORCID

Affiliation:

1. Department of Electrical Engineering National Cheng Kung University Tainan 701401 Taiwan

2. Academy of Innovative Semiconductor and Sustainable Manufacturing National Cheng Kung University Tainan 701401 Taiwan

3. Core Facility Center National Cheng Kung University Tainan 701401 Taiwan

Abstract

AbstractLow‐dimensional devices with different photoconductive effects attract much attention in optoelectronics. In this work, negative photoconductivity (NPC) monolayer graphene photodetectors are fabricated by chemical vapor deposition (CVD), and a positive photoconductivity (PPC) photodetector is realized by decorating perovskite FAPbI3 quantum dots prepared by a simple and cost‐effective non‐polar solvent synthesis method on a graphene surface. The graphene‐based photodetector exhibits an NPC characteristic, which is attributed to the absorption and desorption of water molecules on the graphene surface. The responsivity of the photodetector with an NPC characteristic is −0.86 A W−1 under intense ultraviolet light irradiation, and the detectivity is −2.45 × 109 Jones. The FAPbI3 quantum dots/graphene photodetector with a PPC feature has a responsivity of 8.03 A W−1 and a detectivity of 1.89 × 1010 Jones under the irradiation of ultraviolet light of 365 nm and 55.3 mW cm−2 intensity. Due to the intense light absorption of perovskite combined with the extremely high mobility of graphene, photodetectors have high exciton separation and photocurrents when the devices are irradiated by ultraviolet light. Individual photodetectors are successfully created with NPC and PPC effects; the critical analysis for the different photoconductive mechanisms is provided, which will benefit the development of future multifunctional systems.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3