Elucidating the Crystallization‐Caused Phosphorescence Quenching Mechanism to Achieve Efficient Photoactivated Persistent Luminescence for High‐Quality Light Printing

Author:

Zhang Qingqing1,Hu Pengtao1,Han Chenyang1,Mao Zhu2,Chen Ruitai1,Liang Zhiling1,Cai Wei3,Wang Leyu3,Yang Zhan4,Zheng Chunxiong1,Liu Cong1,Shi Guang1,Xu Bingjia1ORCID

Affiliation:

1. School of Chemistry South China Normal University Guangzhou 510006 China

2. Shenzhen Institute of Advanced Electronic Materials Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China

3. Guangdong Tloong Ink Co., Ltd Zhaoqing 526000 China

4. School of Environmental and Chemical Engineering Wuyi University Jiangmen 529020 China

Abstract

AbstractThe development of polymer‐based luminescent materials with efficient photoactivated ultralong organic phosphorescence (UOP) is of great importance but very challenging. Herein, a new class of organic phosphorescent luminogens is constructed by attaching phenyl rings and/or ethyl benzoates to the nitrogen atoms of a planar aromatic heterocycle pyrrolodiindole (PDI). The compounds show a significant elevation in phosphorescence emission capability after incorporating the ester group(s). However, they cannot produce room‐temperature phosphorescence in the crystalline state. These observations are identified to be associated with the formation of dimers and excimers and the motions of substituents within the molecules. In this context, the PDI derivatives are doped into epoxy polymers with compact and permanent 3D covalent networks. The resulting polymer films show reversible photoactivated UOP under ambient conditions, with quantum yields and lifetimes of up to 24.4% and 2.03 s, respectively, thereby enabling high‐quality and erasable light printing and multi‐level anti‐counterfeiting applications. In addition, they also exhibit excellent water and chemical resistance. This work is conducive to understanding the generation and decay mechanisms of the triplet excitons of organic luminophores with planar aromatic heterocycles in the crystalline state and provides a direction for the development of high‐performance photoactivated UOP materials.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3