“Surface‐Filming Assembly” Strategy for Facilely Constructing and Adjusting Circularly Polarized Luminescence from Perovskite/Chiral Helical Polyacetylene Films

Author:

Liu Yanze123,Yang Kai123,Zhao Biao13,Wu Youping23,Deng Jianping13ORCID

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering Beijing 100029 China

2. State Key Laboratory of Organic−Inorganic Composites Beijing 100029 China

3. College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractTunable circularly polarized luminescence (CPL) has attracted substantial research interest. Till date, the main methods for adjusting CPL is by changing the ratio of fluorescent components and/or regulating external stimuli. Although these adjustment methods have been demonstrated to be reliable, most of them show disadvantages including challenging molecular design, complicated and cumbersome material fabrication, and rigorous adjustment conditions. Herein, the “Surface‐Filming Assembly” (SFA) strategy for conveniently and efficiently modulating CPL by taking the perovskite/chiral helical polyacetylene system as a model is proposed and established. This strategy can facilely achieve multicolor CPL by simply changing the color (or number) of perovskite fluorescent layers and/or the attaching order of the perovskite layers in the assembled multilayer film. Compared with previously reported methods, the SFA strategy integrates the preparation process and adjustment in one single step, simplifying the preparation process (especially the preparation of perovskite with different ratios of halogen atoms) and making adjustment simple and efficient. The SFA strategy and different CPL generation mechanisms to achieve multicolor and white‐color emission with glum up to 10−2 are combined. Based on the CPL film and the solvent sensitivity of perovskite, a solvent‐responsive CPL‐emitting switch and further applied the CPL sample in multiple information displays and encryption are realized.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3