Multichannel Metasurfaces with Frequency‐Direction Multiplexed Amplitude and Phase Modulations

Author:

Xu By He‐Xiu1ORCID,Xu Jian1,Wang Yanzhao1,Wang Chaohui1,Zhang Fan1,Hu Guangwei2

Affiliation:

1. Air and Missile Defense College Air force Engineering University Xi'an 710051 China

2. School of Electrical and Electronic Engineering Nanyang Technological University Singapore 639798 Singapore

Abstract

AbstractElectromagnetic wave multiplexing within a compact ultrathin device is pivotal for high‐capacity communications, wireless power transfer, and other applications. Among them, the independent amplitude and phase (AP) control is necessary, and the decoupling of full‐space scattering channels such as reflection (R) and transmission (T) is favoured for high capacities of information processing. This is yet extremely challenging, even at a single frequency, because A and P are essentially correlated and the R‐T channels are usually coupled. Here, a triband multichannel metasurface is proposed and demonstrated, with a frequency‐direction multiplexed paradigm for on‐demand control of both AP across three independent R‐T channels. For practical realization with high efficiency, a judiciously engineered four‐layer compound meta‐atom is proposed. Such a sophisticated multiplexing can facilitate powerful capability in wavefront control and significantly enrich the capacity as well as degrees of freedom for design. For verification, a proof‐of‐concept metadevice has been devised and experimentally demonstrated at microwave frequency, showcasing transmissive and reflective dual‐vortex beams along x and y directions at 7 and 10.2 GHz, respectively, while transmissive dual focusing at 15.7 GHz. This strategy opens a new avenue for circularly‐polarized AP control toward the capacity limit of frequency and direction and for novel functional metadevices with high integration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3