Efficiency Improvement of Energy Harvesting Device Using Light Pressure Through Plasmon Coupling at the Interface Between Grained Ag Layer and Au Nanoparticles

Author:

Jang Jun‐Hyeon1,Lee Ha Young2,Ryu Jae‐Hoon12,Lee Jeong‐Yeon12,Kim Sung‐Hyun12,Hwang Sun‐Lyeong3,Ahn Hyung Soo1,Ha Dong Han4ORCID,Yi Sam Nyung12ORCID

Affiliation:

1. Department of Nano‐Semiconductor Engineering Korea Maritime & Ocean University Busan 49112 South Korea

2. Interdisciplinary Major of Maritime AI Convergence Korea Maritime & Ocean University Busan 49112 South Korea

3. Department of ICT Convergence Engineering Kangnam University Yongin 16979 South Korea

4. Materials and Convergence Measurement Institute Korea Research Institute of Standards and Science 267 Gajeong‐ro, Yuseong‐gu Daejeon 34113 South Korea

Abstract

AbstractElectricity generation using the piezoelectric effect is an important energy harvesting method. In this study, a solar radiation pressure‐driven crater‐shaped light pressure electric generator (LPEG) device with a Pb(Zr0.52, Ti0.48)O3 (PZT) piezoelectric layer and grained Ag layer is fabricated on GaAs(100) wafer. The electrical output of the device is improved by adsorbing Au nanoparticles (AuNPs) on the Ag layer with the surface of closely connected Ag nanoparticles (AgNPs). By controlling the size and concentration of the AuNPs, a maximum power density of 867.5 µW cm−2 is obtained under a solar simulator (AM 1.5G), which represents a 151.7% improvement over the case without AuNP adsorption. The results of Raman spectra, finite‐difference time‐domain (FDTD) simulations, and COMSOL Multiphysics demonstrate that the newly formed hotspots between AgNPs─AuNPs and AuNPs─AuNPs enhance the electric field of the incident light significantly and extend the region where the electric field is maximally amplified to 600–800 nm, resulting in increased solar radiation pressure on the PZT piezoelectric layer.

Funder

Korea Institute for Advancement of Technology

Ministry of Science and ICT, South Korea

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3