Affiliation:
1. State Key Laboratory of High Power Semiconductor Lasers Changchun University of Science and Technology Changchun 130022 P.R. China
2. Research Center for Nanotechnology Changchun University of Science and Technology Changchun 130022 P.R. China
Abstract
AbstractTwo‐dimensional (2D) transition‐metal carbides, nitrides, and carbocyanides, known as MXenes, have attracted tremendous attention in photonics and electronics because of their promising optical, electrical, and mechanical properties. However, the potential of MXenes‐based heterostructures for ultrafast photonics has not yet been explored. In this study, a Ti3C2Tx/graphene vertical heterostructure (TG‐VHS), an excellent saturable absorber (SA), is successfully used to generate femtosecond laser pulses via passive mode‐locking. The modulation depth of the TG‐VHS is measured to be 28%, which is ≈12.7 and 1.5 times higher than that of Ti3C2TxMXenes and graphene, respectively. Density functional theory calculations show that various heterostructure systems are formed owing to the presence of various functional groups in Ti3C2Tx, and multiple charge transfers significantly enhance the nonlinear optical characteristics of TG‐VHS. Moreover, utilizing TG‐VHS as the SA, a stable mode‐locked operation with a pulse duration as short as 356 fs at a wavelength of 1559.16 nm is achieved; harmonic mode‐locking with the highest repetition rate of 603.1 MHz is also obtained. This study provides an important strategy for developing VHS SA for ultrafast pulse fiber lasers and opens new perspectives for designing advanced MXenes‐based photonic devices.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Chongqing
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献