Lateral Confinement in 2D Nanoplatelets: A Strategy to Expand the Colloidal Quantum Engineering Toolbox

Author:

Curti Leonardo1ORCID,Dabard Corentin1ORCID,Makké Lina1ORCID,Fu Ningyuan1ORCID,Lehouelleur Henri1,Hua Muchuan2ORCID,Bossavit Erwan34ORCID,Cavallo Mariarosa4,Xu Xiang Zhen1,Pierucci Debora4ORCID,Silly Mathieu G.3,Guzelturk Burak5ORCID,Lhuillier Emmanuel4ORCID,Climente Juan I.6ORCID,Diroll Benjamin T.2ORCID,Ithurria Sandrine1ORCID

Affiliation:

1. Laboratoire de Physique et d'Etude des Matériaux ESPCI, PSL Research University Sorbonne Université CNRS 10 rue Vauquelin Paris 75005 France

2. Center for Nanoscale Materials Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA

3. Synchrotron SOLEIL L'Orme des Merisiers Départementale 128 Saint‐Aubin 91190 France

4. Sorbonne Université CNRS Institut des NanoSciences de Paris 4 place jussieu Paris 75005 France

5. X‐Ray Science Division Argonne National Laboratory 9700 S. Cass Avenue Lemont IL 60439 USA

6. Departament de Quimica Fisica i Analitica Universitat Jaume I Castello de la Plana E‐12080 Spain

Abstract

AbstractAmong colloidal nanocrystals, 2D nanoplatelets offer a unique set of properties with exceptionally narrow luminescence and low lasing thresholds. Furthermore, their anisotropic shape expands the playground for the complex design of heterostructures where spectra but also scattering rates can be engineered. A challenge that still remains is to combine shell growth which makes NPLs stable, with spectral tunability. Indeed, most reported shelled nanoplatelets end up being red emitters due to a loss of quantum confinement. Here, the combination of both lateral and in‐plane confinements within a single heterostructure is explored. A CdS/CdSe/CdS/CdZnS core–crown–crown shell structure that enables yellow emission is grown and that is responsive to a large range of excitation including visible photons, X‐ray photons, electron beams, and electrical excitations. k.p simulations predict that emission tunability of up to several 100 s of meV can be obtained in ideal structures. This material also displays stimulated emission resulting from bi‐exciton emission with a low threshold. Once integrated into an LED stack, this material is compatible with sub‐bandgap excitation and exhibits high luminance. Scaling of the electroluminescence properties by downsizing the pixel size is also investigated.

Funder

Instituto Nacional de Ciência e Tecnologia em Nanomateriais de Carbono

U.S. Department of Energy

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3