Affiliation:
1. Department of Electrical and Electronic Engineering Graduate School of Engineering Kobe University 1‐1 Rokkodai Nada Kobe 657–8501 Japan
Abstract
AbstractNarrow‐band Purcell enhancement for electric and magnetic dipole emitters by high‐order Mie resonances up to the magnetic and electric octupole modes of a silicon nanosphere antenna is experimentally demonstrated. Eu3+ complexes are attached on the surface of a silicon nanosphere 160 to 316 nm in diameter, and the photoluminescence and scattering properties are investigated. It is shown that the branching ratio of the 5D0→7Fj (j = 0–4) f‐f transitions of Eu3+ is controlled in a wide range by tuning the resonance wavelength of a silicon nanosphere by the size. Because of the high‐quality factor resonances, not only a specific 5D0→7Fj transition, but also a specific Stark sublevel transition whose spectral separation is 3–9 nm can be selectively enhanced by precisely controlling the size of a silicon nanosphere with the accuracy of ≈2 nm.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献