π‐Conjugated Carbon‐Based Materials for Infrared Thermal Imaging

Author:

Cho Eunkyung1ORCID,Pratik Saied Md1ORCID,Pyun Jeffrey12ORCID,Coropceanu Veaceslav1ORCID,Brédas Jean‐Luc1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry The University of Arizona Tucson AZ 85721‐0088 USA

2. James Wyant College of Optical Sciences The University of Arizona Tucson AZ 85721‐0088 USA

Abstract

AbstractInfrared (IR) thermal imaging is receiving a great deal of attention due to its wide range of applications. Given multiple issues (like cost and availability) with the inorganic materials currently exploited for IR imaging, there is nowadays a great push of developing organic imaging materials. Carbon‐based materials are known to have significant transparency in the visible and IR regions and some are used as transparent conductors. Here, whether π‐conjugated carbon‐based materials are suitable for long‐wave (LW) and mid‐wave (MW) IR imaging applications is computationally assessed. Using density functional theory calculations, the IR‐vibrational properties of molecules from acenes to coronenes and fullerenes, and of periodic systems like graphene and carbon nanotubes are characterized. Fullerenes, graphenes, and double‐walled carbon nanotubes are found to be very attractive as they are transparent in both the LWIR and MWIR regions, a feature resulting from the absence of hydrogen atoms. Also, it is found that replacing hydrogen atoms in a molecule with deuterium or sulfur atoms can be an efficient way to improve their LWIR or MWIR transparency, respectively. For fused‐ring systems having hydrogen atoms on the periphery, designing molecules with trio CH‐units is another way to enhance the transparency in the LWIR region.

Funder

National Science Foundation

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3