Molecular Insight into the Water‐Induced Enhancement of Room‐Temperature Phosphorescence in Organic Aggregates

Author:

Lv Anqi1,Gong Wenqi1,Lv Kaiqi1,Ma Qian1,An Zhongfu1,Ma Huili1ORCID

Affiliation:

1. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China

Abstract

AbstractOrganic room‐temperature phosphorescence (RTP) from triplet excitons has shown great potential for biological imaging and sensing, but these applications in aqueous environments are often limited by the moisture‐mediated phosphorescence quenching. Water‐induced enhancement of RTP can overcome this limitation, but the underlying mechanism remains unclear. This study focuses on two control prototypes CT and CTW, composed of trimesic acid (TMA, guest) and cyanuric acid (CA, host), while CTW introduces 20 wt.% water to CT, leading to enhanced RTP. Theoretical calculations demonstrate that the molecular conformation of TMA manipulated by intermolecular interactions governs the RTP property of aggregates. From CT to CTW, the TMA tends to a more coplanar geometry due to the decreased values in the span of deviation from plane. This conformational change not only increases the spin‐orbit coupling (SOC) of S1Tn, thereby accelerating the intersystem crossing process and radiative transition for promoting RTP efficiency, but also reduces the SOC of T1S0, suppressing the non‐radiative transition to prolong RTP lifetime. Exciton dynamics reproduce the prolonged RTP lifetime from CT to CTW in experiments, which is dominated by the SOC, rather than the electron‐vibration coupling. The findings offer novel insights for developing water‐doped materials with improved RTP performance.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3