Engineering Fano‐Resonant Hybrid Metastructures with Ultra‐High Sensing Performances

Author:

Lio Giuseppe Emanuele12ORCID,Ferraro Antonio3ORCID,Kowerdziej Rafał4ORCID,Govorov Alexander O.5ORCID,Wang Zhiming67ORCID,Caputo Roberto368ORCID

Affiliation:

1. Physics Department University of Florence Via Sansone 6 Sesto Fiorentino, (FI) 50019 Italy

2. European Laboratory for Non Linear Spectroscopy (LENS) Via Nello Carrara 1 Sesto Fiorentino, (FI) 50019 Italy

3. Consiglio Nazionale delle Ricerche ‐ Istituto di Nanotecnologia (CNR‐Nanotec) via P. Bucci cubo 33c Rende CS 87036 Italy

4. Institute of Applied Physics Military University of Technology 2 Kaliskiego St. Warsaw 00‐908 Poland

5. Department of Physics and Astronomy Ohio University Athens OH 45701 USA

6. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China

7. Institute for Advanced Study Chengdu University Chengdu 610106 China

8. Physics Department University of Calabria via P. Bucci cubo 31c Rende CS 87036 Italy

Abstract

AbstractMetamaterials‐based sensors are of primary interest in physics, materials science, medicine, and biophysics thanks to their ability to detect very tiny amount of molecules spread into a medium. Here, a metastructure utilizing the epsilon near zero (εNZ) and Fano–Rabi physics is engineered to design a system with ultra‐high sensitivity. So far, a dedicated study of such systems has been missing. In this work, the authors report the results of their efforts to fill the gap by considering a metasurface, designed as a periodical array of rings with a cross in their center, placed on top of a silver (Ag) and zinc oxide (ZnO) epsilon near‐zero optical nanocavity (εNZ‐ONC) metamaterial. The accurate selection of the metasurface parameters allows the design of a sensor exhibiting an extremely high sensitivity of about 16 000 and 21 000 nm RIU−1 depending on incoming polarization. This work paves the way for the development of novel groundbreaking devices for biomedical and environmental application based on plasmonic and photonic design principles.

Funder

Ministero degli Affari Esteri e della Cooperazione Internazionale

Narodowa Agencja Wymiany Akademickiej

Wojskowa Akademia Techniczna

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3