Recent Advances in 1D Photonic Crystals: Diverse Morphologies and Distinctive Structural Colors for Multifaceted Applications

Author:

Kou Donghui1,Zhang Shufen1,Ma Wei1ORCID

Affiliation:

1. State Key Laboratory of Fine Chemicals Frontier Science Center for Smart Materials Dalian University of Technology Dalian 116024 China

Abstract

Abstract1D photonic crystals (1DPCs) with hierarchically structured lamellar periodic frameworks that enable precise control of light‐matter interactions and contribute robust structural colors represent a groundbreaking advancement in optical materials. The microstructural characteristics and the constituent material properties of these photonic materials play pivotal roles in determining their optical performance and functionality. In recent years, a diverse array of novel 1D photonic structures crafted from various materials emerged, showcasing their tremendous potential in advanced applications. This article provides an in‐depth review of the recent developments in 1DPCs, emphasizing their morphological designs, fabrication strategies, and optical applications. In detail, 1DPCs featuring distinct geometrical morphologies, including lamellar, helical, fibrous, spherical, and nanochained structures are systematically introduced, highlighting the unique optical properties arising from their periodic microstructures. Then, various fabrication methods, involving some innovative techniques utilizing standing‐wave optics, UV dual photopolymerization, and inkjet printing, are succinctly summarized for constructing different photonic structures by using diverse building materials. Subsequently, some typical application examples of 1D photonic materials are listed and discussed involving visual sensing, intelligent displays, anti‐counterfeiting technology, photonic pigments, and optical devices. Finally, the passage addresses the current challenges and presents a forward‐looking perspective on the future fabrication and application of 1DPCs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3