Identifying Electronic Transitions of Defects in Hexagonal Boron Nitride for Quantum Memories

Author:

Cholsuk Chanaprom12,Çakan Aslı1,Suwanna Sujin3,Vogl Tobias12ORCID

Affiliation:

1. Department of Computer Engineering School of Computation Information and Technology Technical University of Munich 80333 Munich Germany

2. Abbe Center of Photonics Institute of Applied Physics Friedrich Schiller University Jena 07745 Jena Germany

3. Optical and Quantum Physics Laboratory Department of Physics Faculty of Science Mahidol University Bangkok 10400 Thailand

Abstract

AbstractA quantum memory is a crucial keystone for enabling large‐scale quantum networks. Applicable to the practical implementation, specific properties, i.e., long storage time, selective efficient coupling with other systems, and a high memory efficiency are desirable. Though many quantum memory systems are developed thus far, none of them can perfectly meet all requirements. This work herein proposes a quantum memory based on color centers in hexagonal boron nitride (hBN), where its performance is evaluated based on a simple theoretical model of suitable defects in a cavity. Employing density functional theory calculations, 257 triplet and 211 singlet spin electronic transitions are investigated. Among these defects, it is found that some defects inherit the Λ electronic structures desirable for a Raman‐type quantum memory and optical transitions can couple with other quantum systems. Further, the required quality factor and bandwidth are examined for each defect to achieve a 95% writing efficiency. Both parameters are influenced by the radiative transition rate in the defect state. In addition, inheriting triplet‐singlet spin multiplicity indicates the possibility of being a quantum sensing, in particular, optically detected magnetic resonance. This work therefore demonstrates the potential usage of hBN defects as a quantum memory in future quantum networks.

Funder

Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference79 articles.

1. Proposal for space-borne quantum memories for global quantum networking

2. Optimal architectures for long distance quantum communication

3. N.Ahmadi S.Schwertfeger P.Werner L.Wiese J.Lester E. D.Ros J.Krause S.Ritter M.Abasifard C.Cholsuk R. G.Krämer S.Atzeni M.Gündoğan S.Sachidananda D.Pardo S.Nolte A.Lohrmann A.Ling J.Bartholomäus G.Corrielli M.Krutzik T.Vogl Quick3‐ design of a satellite‐based quantum light source for quantum communication and extended physical theory tests in space arXiv:2301.111772023 arXiv:2301.11177 [quant‐ph].

4. M.Abasifard C.Cholsuk R. G.Pousa A.Kumar A.Zand T.Riel D. K. L.Oi T.Vogl The ideal wavelength for daylight free‐space quantum key distribution arXiv:2303.021062023 arXiv:2303.02106 [quantph].

5. Towards a distributed quantum computing ecosystem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3