Affiliation:
1. School of Optoelectronic Engineering and Instrumentation Science Dalian University of Technology Dalian 116024 P. R. China
2. Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering Tianjin University, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education) Tianjin 300072 P. R. China
Abstract
AbstractPolarization is a fundamental characteristic of light waves carrying sensitive measurement and signal communication information. Traditional schemes for advanced controlling polarization impose stringent requirements on material features and obtain merely limited performance. Integration of diversified and switchable functions into monolithic metamaterials has become a rising research field, particularly for the terahertz (THz) spectrum. However, the study on the switchable and wearable polarization meta‐converter with nonvolatile operation stays unexplored. Here, the switching of metamaterial‐induced ultra‐broadband and very efficient reflective linear polarization conversion at the THz frequency is experimentally realized. When the as‐deposited Ge2Sb2Te5 (GST225) capping layer of the proposed converter is in amorphous state, the multilayered metamaterials possess triple neighboring peak resonances, by which the linear incident polarization could be converted to its orthogonal counterpart on reflection. The measured polarization conversion ratio (PCR) under normal incidence is above 0.7 in the spectrum ranging from 0.53 to 1.25 THz. Notably, the strength of PCR can be continuously tuned as gradually transiting the structural state of GST225 from amorphous to crystalline. This continuously switchable converter may pave an avenue for dynamically controlling the THz polarization states and bring more possibilities for flexible meta‐devices in the various applications for THz imaging, spectroscopy, and communications.
Funder
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献