Introducing Relatively Isolated In/Out‐Gap Bands in Cs2XCl6 (X = Sn, Hf, Zr, Ti) via B‐Site Substitution: A Route to Brighter Luminescence and Tunable Emission Wavelengths

Author:

Gao Zhenren1,Shen Xing1,Lyu Pengbo1ORCID,Xu Changfu1,Fan Dong2,Sun Lizhong1

Affiliation:

1. Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering Xiangtan University Xiangtan 411105 P. R. China

2. ICGM Université Montpellier, CNRS, ENSCM Montpellier 34293 France

Abstract

AbstractBoth theoretical and experimental approaches are utilized to investigate the fluorescence mechanism of B‐site substituted Cs2XCl6 (A2BX6‐type perovskite, X = Sn, Hf, Zr, Ti), aiming to enhance the luminescence and tune the emission wavelengths. Using Te‐monosubstituted Cs2SnCl6 as a model system, thecomputational discovery that the introduction of out‐gap and in‐gap bands by Te can significantly enhance its transition dipole moment is reported. This is further experimentally confirmed, showing a single emission peak resulting from the radiative transition between the out‐gap and in‐gap bands. The broadening of the emission peak is attributed to self‐trapped exciton (STE), while additional absorption/excitation peaks arise from composition segregation. Additionally, the high‐throughput first‐principles calculations indicate that substituting B‐sites of Cs2XCl6 with Se, Te, Po, As, Sb, and Bi may also significantly enhance their light emission with the introduced bands. Thus, fine‐tuning the emission wavelengths by controlling the position of out‐gap and in‐gap bands through cation selection is proposed. Furthermore, tunable white‐light emission is achieved with excellent color stability by adjusting the Te and Bi composition in co‐substituted Cs2SnCl6 material. The findings highlight the potential of utilizing out‐gap and in‐gap bands to tune luminescence in this perovskite family for advanced device applications, including white‐light‐emitting diodes (WLEDs).

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3