Precisely Regulation of Peripheral Decoration of Multi‐Resonance Molecules and Construction of Highly Efficient Solution‐Processed Orange–Red OLEDs with External Quantum Efficiency Approaching 20%

Author:

Cai Xinliang12,Pan Yue3,Song Xiaoxian1,Li Chenglong2,Pu Yexuan1,Zhuang Xuming1ORCID,Bi Hai1ORCID,Wang Yue124

Affiliation:

1. Jihua Laboratory 28 Huandao South Road Foshan Guangdong 528200 China

2. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China

3. Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education School of Life Science Jilin University Changchun 130012 China

4. Jihua Hengye Electronic Materials CO. LTD. Foshan Guangdong 528200 China

Abstract

AbstractThe advent of multi‐resonance thermally activated delayed fluorescence (MR‐TADF) materials, heralding cutting‐edge emitters with superior efficiency and color fidelity, represents a momentous stride in the realm of organic light‐emitting diodes (OLEDs). In this particular investigation, substantial advancements have been made by enhancing, synthesizing, and characterizing three distinct MR‐type emitters through meticulous control of peripheral decorations using frontier molecular orbital engineering. Through strategic attachment of various pyrimidine derivatives to the positions of the lowest unoccupied molecular orbitals (LUMO) of the parent molecule, the molecular excited state attributes are meticulously tailored, leading to the development of orange‐red MR‐TADF emitters. These designed molecules have demonstrated an emission spectrum shift from orange‐red to orange, exhibiting peak wavelengths spanning the range of 585–608 nm and full width at half‐maximums (FWHM) between 36 and 43 nm. This signifies a remarkable precision in managing the emission maxima of MR‐TADF emitters. Astonishingly, the solution‐processed OLEDs have showcased vibrant orange‐red electroluminescence, characterized by peak wavelengths ranging from 587 to 611 nm, accompanied by a notable external quantum efficiency nearing 20%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Jihua Laboratory

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3