Red Room‐Temperature Afterglow Emissions of Polymer‐Based Doped Materials by Phosphorescence Förster‐Resonance Energy Transfer

Author:

Xu Xinyue1,Zhang Weijing2,Liu Miaochang1,Lei Yunxiang1,Zhou Yunbing1,Guan Yan3,Huang Xiaobo1ORCID,Wu Huayue1

Affiliation:

1. College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China

2. Xi'an Modern Chemistry Research Institute Xi'an 710069 P. R. China

3. College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China

Abstract

AbstractA newly emerged and attractive strategy to obtain afterglow is the use of the Förster‐resonance energy transfer (FRET) from an energy donor with room‐temperature phosphorescence (RTP) to an energy acceptor with fluorescence. Due to the transfer of energy between molecules with different emissions, it is possible to develop the ultralong and long‐wavelength afterglow materials. However, there are few reports on red afterglow materials with emission wavelengths up to 650 nm because of the difficulty of accurate design of chemical structures. Herein, a series of red afterglow materials with emission wavelengths of 650 nm are constructed using polyvinylpyrrolidone as the host, multisubstituted isoquinolines as the guests, and triphenylamine‐based dicyanomethylene‐4H‐pyran derivative as the energy acceptor. Two‐component host‐guest materials exhibit yellow‐green, yellow, and orange RTP with delayed lifetimes of 205‐301 ms and phosphorescence quantum yields of 5.3‐13.2%, which originate from the guests in a rigid microenvironment provided by the host polymer. Three‐component doped materials exhibit red afterglow with a delayed lifetime of 11‐83 ms and an emission quantum yield of 16.2‐22.1%, which is determined to be delayed fluorescence caused by triplet‐to‐singlet FRET from isoquinolines to dicyanomethylene‐4H‐pyran derivative. This work provides inspiration for the development of doped materials with long‐wavelength room‐temperature afterglow.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3