Multilayer Graphene/Epitaxial Silicon Near‐Infrared Self‐Quenched Avalanche Photodetectors

Author:

Li Zongwen1,Cao Xiaoxue12,Zhang Zhixiang1,Qiao Baoshi3,Tian Feng13,Dai Yue1,Bodepudi Srikrishna Chanakya1,Liu Xinyu1,Chai Jian1,Liu Dajian1,Anwar Muhammad Abid1,Han Xun1,Xue Fei1,Fang Wenzhang1,Dan Yaping4,Zhao Yuda1,Hu Huan3,Yu Bin1,Gao Chao2,Xu Yang13ORCID

Affiliation:

1. College of Integrated Circuits ZJU‐Hangzhou Global Scientific and Technological Innovation Center State Key Laboratory of Silicon and Advanced Semiconductor Materials Zhejiang University Hangzhou 310027 China

2. MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China

3. ZJU‐UIUC Joint Institute, International Campus Zhejiang University Haining 314400 China

4. National Key Laboratory of Science and Technology on Micro/Nano Fabrication Shanghai Jiao Tong University Shanghai 200240 China

Abstract

Abstract2D materials and their heterostructures exhibit considerable potential in the development of avalanche photodetectors (APDs) with high gain, response, and signal‐to‐noise ratio. These materials hold promise in addressing inherent technical challenges associated with APDs, such as low light absorption coefficient, elevated noise current, and substantial power consumption due to high bias resulting in only moderate current gain. In this work, a macro‐assembled graphene nanofilm (nMAG)/epitaxial silicon (epi‐Si) vertical heterostructure photodetector with a responsivity of 0.38 A W−1 and a response time of 1.4 µs is reported. The photodetectors use high‐quality nMAG as the absorption layer and a lightly‐doped epi‐Si layer as the multiplication region under the avalanche mode to provide a high responsivity (2.51 mA W−1) and detectivity (2.67 × 109 Jones) at 1550 nm, which can achieve high‐resolution imaging. In addition, the APD displays a weak noise level and an avalanche gain of M = 1123. It can work with relatively low avalanche turn‐on voltages and achieve self‐quenching by switching from illumination to dark during avalanche multiplication, with a real‐time data transfer rate of 38 Mbps in near‐infrared light communication data links. The proposed structure enables the fabrication of high‐performance APDs in the infrared range using complementary‐metal‐oxide‐semiconductor (CMOS)‐compatible processes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3