Controllable Fabrication of Organic Semiconductors for Aligned Microlasers and Integrated Photodetectors

Author:

Qian Mengdan1,Zhang Qiaoyan1,Zhang Hui1,Tang Baolei2,Yu Kun1,Liu Yufang13ORCID

Affiliation:

1. Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications School of Physics Henan Normal University 46 Jianshe Road Xinxiang 453007 China

2. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China

3. Institute of Physics Henan Academy of Sciences (IOP HAS) 266‐38 Mingli Road Zhengzhou 450047 China

Abstract

AbstractEngineering of organic single crystal toward controllable and aligned patterns at microscale is crucial to the realization of highly integrated organic photonic devices and optoelectronics. However, precise positioning and controllable morphology of crystal structures is still challenging due to the strict conditions for crystal growth. In this paper, a solution based crystal regulation strategy with the assistance of template‐constrained growth method and femtosecond laser processing technology is developed to prepare aligned crystalline microribbon arrays. Simple solvent evaporation results in the random distribution and orientation of self‐assembled crystalline microribbons while it tends to form highly crystalline and orderly microribbon arrays assisted by the confined template microchannels. The large‐scale microribbon array can be fabricated as organic photodetectors with sensitive and fast response under 405 nm illumination. By virtue of the femtosecond laser processing technique, the microribbon arrays are precisely processed into a series of crystal subunits and each microribbon subunit can function as an individual microcavity resonator to produce stable, high‐quality organic laser. The facile solution based template‐constrained self‐assembly and femtosecond laser processing method provide novel strategies to generate highly oriented and controllable crystal structures for the potential applications in integrated organic lasers and optoelectronics.

Funder

National Natural Science Foundation of China

Innovation Scientists and Technicians Troop Construction Projects of Henan Province

Natural Science Foundation of Henan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3