Affiliation:
1. Key Laboratory of Luminescence and Optical Information Institute of Optoelectronics Technology Ministry of Education Beijing Jiaotong University Beijing 100044 China
2. School of Materials Science and Engineering Harbin Institute of Technology at Weihai 2 West Wenhua Road Weihai 264209 China
Abstract
AbstractRealizing the horizontal orientation of molecular transition dipole moment (TDM) can greatly improve the out‐coupling efficiency and the resultant external quantum efficiency (EQE) of organic light‐emitting diodes (OLEDs). Herein, key parameters governing the horizontal TDM have been continuously explored. However, quantitatively identifying the key parameters from the molecular structure viewpoint is rather challenging due to the complexity of the influencing parameters. Here, by training the machine learning (ML) models using the experimental results, the quantitative relationship between the molecular structure and the horizontal TDM ratio (ϴ) of thermally activated delayed fluorescent (TADF) emitters in the host‐guest films is identified. The molecular structure is represented by either quantum chemistry‐calculated structural descriptors or topological/physical/chemical molecular descriptors. Key descriptors are ranked and can be used for guiding molecular structure design. Moreover, the accuracy of ML models is double‐verified by comparing the predicted results with experimental ϴ values and the trend of experimental EQE based on a group of materials. Using compressed sensing technology, the low‐dimension material space is also visually constructed based on key descriptors, and the results are consistent with those of the ML models.
Funder
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献