All‐Optical Excitatory and Inhibitory Synapses Based on Reversible Photo‐Induced Phase Transition in Single‐Crystal CsPbBr3 Perovskite

Author:

Cheng Pengpeng12,Liu Zehan12,Zhou Jian12,Kang Ruyan3,Wang Xiaoshan12,Li Xiaoxuan12,Zhao Xian12,Zhao Jia14,Zuo Zhiyuan123ORCID

Affiliation:

1. Key Laboratory of Laser & Infrared System (Shandong University) Ministry of Education Shandong University Qingdao 266237 P. R. China

2. Center for Optics Research and Engineering Shandong University Qingdao 266237 P. R. China

3. Institute of Novel Semiconductors Shandong University Jinan 250100 P. R. China

4. School of Information Science and Engineering Shandong University Qingdao 266237 P. R. China

Abstract

AbstractThe hardware‐level construction of artificial synapses, mimicking the functionality of biological synapses, is widely acknowledged as a pivotal stride in artificial intelligence systems. Particularly, establishing all‐optical artificial synapses for neuromorphic computing, leveraging on‐chip optical interconnects instead of conventional wired connections, has garnered widespread attention. Here, high‐quality CsPbBr3 single crystals are synthesized, and intriguing relaxation processes associated with reversible photo‐induced phase transition (PIPT) are observed, leading to a corresponding change in the birefringence effect. The birefringence change is systematically analyzed by an optical system. The relaxation time of reversible PIPT is similar to the behavior patterns of biological synapses, enabling the device to mimic synaptic features. The device successfully mimics excitatory/inhibitory synaptic behaviors such as EPSP/IPSP, PPF, SDDP, SFDP, and SIDP by using 1310 nm signal. Furthermore, the device continues to exhibit excitatory/inhibitory synaptic functionality when 940 and 1550 nm signals are applied, achieving multi‐wavelength synaptic behaviors. The all‐optical devices have the advantages of low crosstalk, fast signaling, and wide optical bandwidth, which lays the foundation of all‐optical hardware for neuromorphic computing systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3