Toward Silicon‐Matched Singlet Fission: Energy‐Level Modifications Through Steric Twisting of Organic Semiconductors

Author:

Lee Calvin J.1ORCID,Sharma Ashish2,Panjwani Naitik A.3,Etchells Isaac M.4,Gholizadeh Elham M.5,White Jonathan M.1,Shaw Paul E.4,Burn Paul. L.4,Behrends Jan3,Rao Akshay2,Jones David1

Affiliation:

1. School of Chemistry, Bio21 Institute University of Melbourne Parkville VIC 3010 Australia

2. Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK

3. Berlin Joint EPR Lab, Fachbereich Physik Freie Universität Berlin 14195 Berlin Germany

4. Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences The University of Queensland St Lucia QLD 4072 Australia

5. School of Chemistry University of Melbourne Parkville VIC 3010 Australia

Abstract

AbstractSinglet fission (SF) is a potential avenue for augmenting the performance of silicon photovoltaics, but the scarcity of SF materials energy‐matched to silicon represents a barrier to the commercial realization of this technology. In this work, a molecular engineering approach is described to increase the energy of the S1 and T1 energy levels of diketopyrrolopyrrole derivatives such that the energy‐level requirements for exothermic SF and energy‐transfer to silicon are met. Time‐resolved photoluminescence studies show that the silicon‐matched materials are SF active in the solid state, forming a correlated triplet pair 1(TT) – a crucial intermediate in the SF process – as observed through Herzberg‐Teller emission from 1(TT) at both 77 K and room temperature. Transient electron paramagnetic resonance studies show that the correlated triplet pair does not readily separate into the unbound triplets, which is a requirement for energy harvesting by silicon. The fact that the triplet pair do not separate into free triplets is attributed to the intermolecular crystal packing within the thin films. Nevertheless, these results demonstrate a promising route for energy‐tuning silicon‐matched SF materials.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3