High‐Efficiency All‐Optical Modulator Based on Ultra‐Thin Silicon/Graphene Hybrid Waveguides

Author:

Cao Hongyuan1,Ding Mingfei1,Chen Haitao12,Liu Chaoyue1,Yu Laiwen1,Zhu Mingyu1,Zhao Weike1,Guo Jingshu1,Li Huan1,Yu Zejie1,Gao Shiming13,Dai Daoxin13ORCID

Affiliation:

1. State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics Zhejiang University Zijingang Campus Hangzhou 310058 China

2. College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano‐Optoelectronic Information Materials and Devices National University of Defense Technology Changsha Hunan 410073 China

3. Ningbo Research Institute Zhejiang University Ningbo 315100 China

Abstract

AbstractAll‐optical modulation plays a key role in next‐generation optical processing and has attracted enormous attention worldwide. With extraordinary optoelectronic characteristics and friendly integration compatibility with various nanostructures, graphene shows great potential for ultrafast and energy‐efficient all‐optical modulation. Here, high‐efficiency on‐chip all‐optical modulation is experimentally demonstrated based on ultra‐thin silicon/graphene hybrid waveguides, which are complementary‐metal‐oxide‐semiconductor‐compatible and easy to fabricate. Owing to the enhanced light‐graphene interaction enabled by the ultra‐thin silicon photonic platform, the optical nonlinear absorption in graphene is greatly enhanced and a modulation depth of >2 dB is achieved with a saturation threshold of 0.9 pJ per pulse for a 50‐µm‐long modulator. The measured modulation efficiency is as high as 0.052 dB µm−1. Furthermore, the proposed all‐optical modulator has the potential to operate at a bandwidth of hundreds of gigahertz. The present hybrid integration of graphene on ultra‐thin silicon photonic waveguides paves the way toward the applications of on‐chip ultrafast and energy‐efficient all‐optical information processing.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3