Pressure‐Induced Inversion of Chiroptical Properties in Cholesteric Assembled Cellulose Nanocrystals

Author:

Meng Xiao1,Wang Yue2,Bukharina Daria3,Fei Yunfan4,Wang Jingtian2,He Yisheng1,Miao Qing1,Yu Runze1,Jin Bowen1,Wang Xi1,Chen Gang1,Li Kuo4,Tsukruk Vladimir V.3,Wang Kai25,Ye Chunhong1ORCID

Affiliation:

1. School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China

2. State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 China

3. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332 USA

4. Center for High Pressure Science and Technology Advanced Research Beijing 100094 China

5. Shandong Key Laboratory of Optical Communication Science and Technology School of Physics Science and Information Technology Liaocheng University Liaocheng 252000 China

Abstract

AbstractDynamic manipulation of the chiroptical effect, particularly the inversion of chiral signal, has attracted broad attention, but still remains challenging, Here, stepwise tuning of the helicoidal assembly and chiroptical properties of the cellulose nanocrystal (CNC) films utilizing high pressure are demonstrated. With in situ monitoring, the changes of Fourier‐transform infrared (FTIR) spectra and evaluating the corresponding applied energy, three distinctive stages of chiroptical properties are clearly identified. In these stages, the photonic bandgap of the CNC film exhibits a fast‐slow–fast alteration over different energy imposed. The three stages are associated sequentially with interlayer space reduction, hydrogen bonding reconfiguration, and covalent bands changing. A switch of chiral signal from left‐ to right‐handedness is observed in the third stage, and the handedness of CD spectra can be recovered upon release, which is barely observed. This unique property is suspected to be the change in CNCs assembly induced by molecular‐level conformational change. This work sheds light on the fundamental understanding of how pressure can trigger the change from molecular‐level to hierarchical assembly and corresponding chiroptical performance, facilitating the design of chiral assembly with pre‐programmed triggering chiroptical properties of bio‐photonic materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3