High‐Efficiency Structural Coloration Enabled by Defect‐Free Block Copolymer Self‐Assembly for a Solar Cell Distributed Bragg Reflector

Author:

Park Suhyeon1,Shafian Shafidah2,Lee Juhwan3,Jo Seungyun1,Jeon Seungbae1,Lee Seungjae1,Shangxian Ding1,Ahn Hyungju4,Kim Kyungkon3,Ryu Du Yeol1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering Yonsei University 50 Yonsei‐ro, Seodaemun‐gu Seoul 03722 South Korea

2. Solar Energy Research Institute Universiti Kebangsaan Malaysia Selangor Bangi 43600 Malaysia

3. Department of Chemistry and Nanoscience Ewha Womans University 52 Ewhayeodae‐gil, Seodaemun‐gu Seoul 03760 South Korea

4. Industry Technology Convergence Centre Pohang Accelerator Laboratory 80 Jigok‐ro, Nam‐gu Pohang 37673 South Korea

Abstract

AbstractSolar cell coloration with minimum optical loss is increasingly required for building‐integrated photovoltaics (BIPV) in modern urban areas because of its importance in harmonizing the exterior of zero‐energy buildings and surroundings. A simple strategy for developing a distributed Bragg reflector (DBR) is designated with 1D lamella‐forming polystyrene‐b‐poly(2‐vinylpyridine) (PS‐b‐P2VP) films. An optimized thermal annealing process produces defect‐free lamellar microdomains oriented parallel to the substrate throughout the film. The selective crosslinking in the P2VP block and swelling of these films in a methanol solution with methanesulfonic acid facilitate the formation of highly asymmetric gigantic lamellae, enabling the entire visible‐wavelength spectrum of DBR structural colors. Three representative red (R), green (G), and blue (B) DBR films are produced on a Si solar cell. Coloration from high‐reflectance and narrow‐width DBR films results in vividly colored Si solar cells with a minor or negligible reduction in power conversion efficiency. The approach for photovoltaics, in terms of both the attractive esthetic and technical aspects of BIPV application, offers a viable method for fabricating high‐performance DBR films based on block copolymer self‐assembly.

Funder

National Research Foundation

Ministry of Science, ICT and Future Planning

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3