Strong Coupling in Two‐Phase Metamaterials Fabricated by Sequential Self‐Assembly

Author:

Wohlwend Jelena1ORCID,Haberfehlner Georg2,Galinski Henning1

Affiliation:

1. Laboratory for Nanometallurgy Department of Materials ETH Zurich Zürich 8093 Switzerland

2. Institut für Elektronenmikroskopie und Nanoanalytik TU Graz Graz 8010 Austria

Abstract

AbstractSelf‐assembly processes provide the means to achieve scalable and versatile metamaterials by “bottom‐up” fabrication. Despite their enormous potential, especially as a platform for energy materials, self‐assembled metamaterials are often limited to single phase systems, and complex multi‐phase metamaterials have scarcely been explored. A new approach based on sequential self‐assembly (SSA) that enables the formation of a two‐phase metamaterial (TPM) composed of a disordered network metamaterial with embedded nanoparticles (NPs) is proposed. Taking advantage of both the high‐spatial and high‐energy resolution of electron energy loss spectroscopy (EELS), inhomogeneous localization of light in the network is observed, concurrent with dipolar and higher‐order localized surface plasmon modes in the nanoparticles. Moreover, it is demonstrated that the coupling strength deviates from the interaction of two classical dipoles when entering the strong coupling regime. The observed energy exchange between two phases in this complex metamaterial, realized solely through self‐assembly, implies the possibility to exploit these disordered systems for plasmon‐enhanced catalysis.

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3