Turning Self‐Trapped Exciton Emission to Near‐Infrared Region in Thermochromism Zero‐Dimensional Hybrid Metal Halides

Author:

Bai Tianxin1ORCID,Wang Xiaochen2,He Yanmei34,Wei Haiwen1,Su Yan2,Chen Junsheng4ORCID

Affiliation:

1. Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China

2. Key Laboratory of Materials Modification by Laser Electron and Ion Beams Dalian University of Technology Ministry of Education Dalian 116024 P. R. China

3. Department of Chemical Physics and NanoLund Lund University P.O. Box 124 Lund 22100 Sweden

4. Nano‐Science Center and Department of Chemistry University of Copenhagen Copenhagen 2100 Denmark

Abstract

AbstractLow dimensional lead‐free metal halides have become the spotlight of the research on developing multifunctional optoelectronic materials as their properties show a wide range of tunability. However, most reported low dimensional metal halides only function in the ultra‐violet to visible range due to their large bandgap. Moreover, the organic cation based low dimensional metal halides show limited thermal stability; on the other hand, their inorganic cation based counterparts suffer from limited solution processability. A hybrid cation approach is proposed, where a zero dimensional (0D) metal halide ((DFPD)2CsBiI6) is developed by using mixed organic–inorganic cations: 4, 4‐difluoropiperidine (DFPD) and cesium (Cs+). This ensures both thermal stability and solution processability. Furthermore, [BiI6]3− octahedra are serving as active light absorption units, which ensures the bandgap to be located at the visible region. Its photoluminescence (PL) is further shifted to the near infrared (NIR) region by doping (DFPD)2CsBiI6 with antimony (Sb3+). The developed materials show multifunctional properties: thermochromic behavior, light detection, and NIR light emitting. This study expands the scope of developing multifunctional 0D metal halides.

Funder

Novo Nordisk Fonden

China Scholarship Council

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3