Affiliation:
1. Key Laboratory of Forest Plant Ecology Ministry of Education Engineering Research Center of Forest Bio‐Preparation College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 P. R. China
2. Post‐doctoral Mobile Research Station of Chemical Biology Northeast Forestry University Harbin 150040 P. R. China
3. State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
4. Frontiers Science Center for Flexible Electronics (FSCFE) MIIT Key Laboratory of Flexible Electronics (KLFE) Northwestern Polytechnical University Xi'an 710072 P. R. China
Abstract
AbstractThe efficient collaboration of light tunability and intelligent deformation of fluorescent materials can create an advanced spatiotemporal cascade platform that enables multi‐level and multidimensional information storage and encryption. Here, cellulose‐based dynamic double‐network hydrogels with excitation‐dependent (Ex‐De) behavior are proposed. The mechanism of multi‐channel radiative relaxation and multiple excited state transition of the photoactive component 4′‐([2,2′:6′,2″‐terpyridin]−4′‐yl)‐[1,1′‐biphenyl]−4‐carbaldehyde (TPy‐CHO) has been established, and a desirable regulation of excitation energy (wavelength, intensity) on the time scale for multi‐level encryption has been achieved. Notably, the dense hydrogen bonds and non‐covalent interactions in polymer networks not only enhance the Ex‐De behavior, but also provide excellent optical resolution and richer polychromic fluorescence. Even ideal cold white fluorescence is obtained through energy transfer between organic (TPy‐CHO) and inorganic (lanthanide ion) hybrid materials. Simultaneously, this unique network structure endows the hydrogel with temperature‐mediated self‐healing, controllable shape programming behavior and anti‐swelling ability, allowing to achieve dynamic multidimensional information encryption capability. The encoded information can reversibly emerge and disappear, allowing for instantaneous on‐demand decryption and intelligent re‐writability. As a result, a promising multi‐level and multidimensional synergistic anti‐counterfeiting mechanism is established through the cascade process of “spatial security‐ light trigger‐ fluorescence multilevel output‐temporal rewriting”.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
China Academy of Space Technology
Higher Education Discipline Innovation Project
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献