Affiliation:
1. Institute for Advanced Study Shenzhen University Shenzhen 518060 China
2. School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China
3. Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China
4. State Key Laboratory of Superlattices and Microstructures Institute of Semiconductors Chinese Academy of Sciences Beijing 100083 China
Abstract
AbstractExtremely/super low frequency (ELF/SLF) electromagnetic (EM) waves offer efficient propagation in challenging cross‐medium environments. However, conventional coil antennas, when emitting ELF/SLF EM waves, face constraints related to size, radiation efficiency, and high power consumption. To overcome these limitations, a disc‐rod structured piezoelectric rotating resonator is proposed, which can turn a NdFeB permanent magnet disc into rotation with an impressive high‐speed up to 10 000 r min−1 via wobbling motion of the rod tip, effectively generating ELF/SLF magnetic field radiation via rotational oscillation other than common linear and swinging oscillation of the magnetic dipole moments. The piezo‐turned magnetic rotation (PTMR) method leads to a two to five‐fold enhancement in magnetic field emission compared to existing piezo‐actuated acoustic resonant antennas, and a 370 times higher emitting efficiency compared to the traditional coil antenna with a comparable size. In contrast to unidirectional EM wave radiation at their solely resonant frequencies, the PTMR antenna showcases omnidirectional B‐field radiation with continuous tunability in a dual frequency band spanning from 10 to 100 Hz. Moreover, an air–seawater cross‐medium magnetic field communication is successfully demonstrated. With outstanding performance metrics, the PTMR antenna emerges as a promising solution for efficient long‐distance ELF/SLF cross‐medium communication.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献